TY - JOUR
T1 - β-NGF stimulates steroidogenic enzyme and VEGFA gene expression, and progesterone secretion via ERK 1/2 pathway in primary culture of llama Granulosa cells
AU - Valderrama, Ximena
AU - Ulloa-Leal, Cesar
AU - Silva, Mauricio Erciario
AU - Goicochea, Jose
AU - Apichela, Silvana
AU - Argañaraz, Martin
AU - Sari, Luciana
AU - Paiva, Luis
AU - Ratto, Vicente Francisco
AU - Ratto, Marcelo Hector
N1 - Publisher Copyright:
© 2020 Valderrama, Ulloa-Leal, Silva, Goicochea, Apichela, Argañaraz, Sari, Paiva, Ratto and Ratto.
PY - 2020/10/23
Y1 - 2020/10/23
N2 - The beta-nerve growth factor (β-NGF) from llama seminal plasma exerts ovulatory and luteotrophic effects following intramuscular or intrauterine infusion in llamas and alpacas. In this study, we investigate the in vitro effect of llama β-NGF on the expression of genes involved in angiogenesis and progesterone synthesis as well as progesterone release in preovulatory llama granulosa cells; we also determine whether these changes are mediated via the ERK1/2 signaling pathway. From adult female llamas, we collected granulosa cells from preovulatory follicles by transvaginal ultrasound-guided follicle aspiration; these cells were pooled and incubated. After 80% confluence, the cultured granulosa cells were treated with β-NGF,β-NGF plus the MAPK inhibitor U0126, or luteinizing hormone, and the abundance of angiogenic and steroidogenic enzyme mRNA transcripts were quantified after 10 and 20 h by RT-qPCR. We also quantified the progesterone concentration in the media after 48 h by radioimmunoassay. We found that application of β-NGF increases the abundance of mRNA transcripts of the vascular endothelial growth factor (VEGFA) and the steroidogenic enzymes cytochrome P450 side-chain cleavage (P450scc/CYP11A1), steroidogenic acute regulatory protein (STAR), and 3β-hydroxysteroid dehydrogenase (HSD3B1) at 10 and 20 h of treatment. Application of the MAPK inhibitor U0126 resulted in downregulation of the genes encoding these enzymes. β-NGF also enhanced progesterone synthesis, which was prevented by the prior application of the MAPK inhibitor U0126. Finally, western blot analysis confirmed that β-NGF activates the ERK1/2 signaling pathway. In conclusion, our results indicate that β-NGF exerts direct luteotropic effects on llama ovarian tissue via the ERK 1/2 pathway.
AB - The beta-nerve growth factor (β-NGF) from llama seminal plasma exerts ovulatory and luteotrophic effects following intramuscular or intrauterine infusion in llamas and alpacas. In this study, we investigate the in vitro effect of llama β-NGF on the expression of genes involved in angiogenesis and progesterone synthesis as well as progesterone release in preovulatory llama granulosa cells; we also determine whether these changes are mediated via the ERK1/2 signaling pathway. From adult female llamas, we collected granulosa cells from preovulatory follicles by transvaginal ultrasound-guided follicle aspiration; these cells were pooled and incubated. After 80% confluence, the cultured granulosa cells were treated with β-NGF,β-NGF plus the MAPK inhibitor U0126, or luteinizing hormone, and the abundance of angiogenic and steroidogenic enzyme mRNA transcripts were quantified after 10 and 20 h by RT-qPCR. We also quantified the progesterone concentration in the media after 48 h by radioimmunoassay. We found that application of β-NGF increases the abundance of mRNA transcripts of the vascular endothelial growth factor (VEGFA) and the steroidogenic enzymes cytochrome P450 side-chain cleavage (P450scc/CYP11A1), steroidogenic acute regulatory protein (STAR), and 3β-hydroxysteroid dehydrogenase (HSD3B1) at 10 and 20 h of treatment. Application of the MAPK inhibitor U0126 resulted in downregulation of the genes encoding these enzymes. β-NGF also enhanced progesterone synthesis, which was prevented by the prior application of the MAPK inhibitor U0126. Finally, western blot analysis confirmed that β-NGF activates the ERK1/2 signaling pathway. In conclusion, our results indicate that β-NGF exerts direct luteotropic effects on llama ovarian tissue via the ERK 1/2 pathway.
KW - CYP11A1
KW - CYP19A1
KW - Corpus luteum
KW - Follicle
KW - HSD3B1
KW - MAPK
KW - STAR
KW - U0126
UR - http://www.scopus.com/inward/record.url?scp=85101252072&partnerID=8YFLogxK
U2 - 10.3389/fvets.2020.586265
DO - 10.3389/fvets.2020.586265
M3 - Article
AN - SCOPUS:85101252072
SN - 2297-1769
VL - 7
JO - Frontiers in Veterinary Science
JF - Frontiers in Veterinary Science
M1 - 586265
ER -